New Development in the Preparation of Micro/Nano-Wires of Molecular (Magnetic) Conductors
نویسندگان
چکیده
A lot of molecular (magnetic) conductors are prepared largely using charge-transfer (CT) salts of donor molecules with acceptor molecules or nonmagnetic or magnetic anions such as metal halides and oxides; their CT salts are usually obtained as bulk crystals, which are used to elucidate the electrical conducting (magnetic) properties. In contrast, a small number of micro/nano-crystals of the molecular (magnetic) conductors, especially micro/nano-wires, are known, of which highly conducting nanowires are necessary as a key component in the development of the next generation of nano-size transistors and spin-transistors. Very recently, we succeeded in preparing highly conductive micro/nano-wires of CT salts between bent donor molecules developed by one of the author’s group and magnetic FeX4 (X = Cl, Br) ions: (1) by electrochemical oxidation of the bent donor molecules with a silicon wafer electrode coated with a phospholipid multi-lamellar structure as well as, (ii) by electrochemical oxidation of the bent donor molecules with a large arc structure, in the presence of NBu4FeX4 supporting electrolytes. OPEN ACCESS Materials 2010, 3 1641 This article reviews template-free and template-assisted methods developed so far for the preparation of micro/nano-wires of molecular (magnetic) conductors along with our new methods. The conducting properties of these micro/nano-wires are compared with those of the corresponding bulk crystals.
منابع مشابه
Fabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization
In this paper, we have studied the electrical properties of the randomly distributed metallic (Co and Fe) nano/ micro wires on Silicon substrate. Deposition was carried out potentiostatically into the pores of the track-etch polycarbonate membrane spin coated onto the Si substrate. Spin coated films were irradiated with 150MeV Ni (+11) ions at a fluence of 8E7 ions/cm2, followed by UV irradiati...
متن کاملStrain gradient torsional vibration analysis of micro/nano rods
Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...
متن کاملStrain gradient torsional vibration analysis of micro/nano rods
Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...
متن کاملSonochemical Synthesis and Characterization of a Nano-Sized Lead (II) Coordination Polymer; A New Precursor for the Preparation of PbO Nanoparticles
Development of components that can form large molecular aggregates through non–covalent interactions, in nano size structures, has been an active area of research. In current study, a nano-sized Pb(II) coordination polymer, {[Pb(pydc)(pydc.H2)(H2O)2]2}n (1), where [pydc.H2= 2,6-pyridinedicarboxylic acid), wer...
متن کاملNumerical study of induction heating by micro / nano magnetic particles in hyperthermia
Hyperthermia is one of the first applications of nanotechnology in medicine by using micro/nano magnetic particles that act based on the heat of ferric oxide nanoparticles or quantum dots in an external alternating magnetic field. In this study, a two-dimensional model of body and tumor tissues embedded is considered. Initially, the temperature distribution is obtained with respect to tumor pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2010